5 research outputs found

    Subject Specific Computational Models of the Knee to Predict Anterior Cruciate Ligament Injury

    Get PDF
    Knee joint is a complex joint involving multiple interactions between cartilage, bone, muscles, ligaments, tendons and neural control. Anterior Cruciate Ligament (ACL) is one ligament in the knee joint that frequently gets injured during various sports or recreational activities. ACL injuries are common in college level and professional athletes especially in females and the injury rate is growing in epidemic proportions despite significant increase in the research focusing on neuromuscular and proprioceptive training programs. Most ACL injuries lead to surgical reconstruction followed by a lengthy rehabilitation program impacting the health and performance of the athlete. Furthermore, the athlete is still at the risk of early onset of osteoarthritis. Regardless of the gender disparity in the ACL injury rates, a clear understanding of the underlying injury mechanisms is required in order to reduce the incidence of these injuries. Computational modeling is a resourceful and cost effective tool to investigate the biomechanics of the knee. The aim of this study was twofold. The first aim was to develop subject specific computational models of the knee joint and the second aim to gain an improved understanding of the ACL injury mechanisms using the subject specific models. We used a quasi-static, multi-body modeling approach and developed MRI based tibio-femoral computational knee joint models. Experimental joint laxity and combined loading data was obtained using five cadaveric knee specimens and a state-of-the-art robotic system. Ligament zero strain lengths and insertion points were optimized using joint laxity data. Combined loading and ACL strain data were used for model validations. ACL injury simulations were performed using factorial design approach comprising of multiple factors and levels to replicate a large and rich set of loading states. This thesis is an extensive work covering all the details of the ACL injury project explained above and highlighting the importance of 1) computational modeling in inj

    Subject Specific Computational Models of the Knee to Predict Anterior Cruciate Ligament Injury

    Get PDF
    Knee joint is a complex joint involving multiple interactions between cartilage, bone, muscles, ligaments, tendons and neural control. Anterior Cruciate Ligament (ACL) is one ligament in the knee joint that frequently gets injured during various sports or recreational activities. ACL injuries are common in college level and professional athletes especially in females and the injury rate is growing in epidemic proportions despite significant increase in the research focusing on neuromuscular and proprioceptive training programs. Most ACL injuries lead to surgical reconstruction followed by a lengthy rehabilitation program impacting the health and performance of the athlete. Furthermore, the athlete is still at the risk of early onset of osteoarthritis. Regardless of the gender disparity in the ACL injury rates, a clear understanding of the underlying injury mechanisms is required in order to reduce the incidence of these injuries. Computational modeling is a resourceful and cost effective tool to investigate the biomechanics of the knee. The aim of this study was twofold. The first aim was to develop subject specific computational models of the knee joint and the second aim to gain an improved understanding of the ACL injury mechanisms using the subject specific models. We used a quasi-static, multi-body modeling approach and developed MRI based tibio-femoral computational knee joint models. Experimental joint laxity and combined loading data was obtained using five cadaveric knee specimens and a state-of-the-art robotic system. Ligament zero strain lengths and insertion points were optimized using joint laxity data. Combined loading and ACL strain data were used for model validations. ACL injury simulations were performed using factorial design approach comprising of multiple factors and levels to replicate a large and rich set of loading states. This thesis is an extensive work covering all the details of the ACL injury project explained above and highlighting the importance of 1) computational modeling in inj

    Subject Specific Computational Models of the Knee to Predict Anterior Cruciate Ligament Injury

    No full text
    Knee joint is a complex joint involving multiple interactions between cartilage, bone, muscles, ligaments, tendons and neural control. Anterior Cruciate Ligament (ACL) is one ligament in the knee joint that frequently gets injured during various sports or recreational activities. ACL injuries are common in college level and professional athletes especially in females and the injury rate is growing in epidemic proportions despite significant increase in the research focusing on neuromuscular and proprioceptive training programs. Most ACL injuries lead to surgical reconstruction followed by a lengthy rehabilitation program impacting the health and performance of the athlete. Furthermore, the athlete is still at the risk of early onset of osteoarthritis. Regardless of the gender disparity in the ACL injury rates, a clear understanding of the underlying injury mechanisms is required in order to reduce the incidence of these injuries. Computational modeling is a resourceful and cost effective tool to investigate the biomechanics of the knee. The aim of this study was twofold. The first aim was to develop subject specific computational models of the knee joint and the second aim to gain an improved understanding of the ACL injury mechanisms using the subject specific models. We used a quasi-static, multi-body modeling approach and developed MRI based tibio-femoral computational knee joint models. Experimental joint laxity and combined loading data was obtained using five cadaveric knee specimens and a state-of-the-art robotic system. Ligament zero strain lengths and insertion points were optimized using joint laxity data. Combined loading and ACL strain data were used for model validations. ACL injury simulations were performed using factorial design approach comprising of multiple factors and levels to replicate a large and rich set of loading states. This thesis is an extensive work covering all the details of the ACL injury project explained above and highlighting the importance of 1) computational modeling in inj

    Dynamic MRI to quantify musculoskeletal motion: A systematic review of concurrent validity and reliability, and perspectives for evaluation of musculoskeletal disorders.

    No full text
    To report evidence for the concurrent validity and reliability of dynamic MRI techniques to evaluate in vivo joint and muscle mechanics, and to propose recommendations for their use in the assessment of normal and impaired musculoskeletal function.The search was conducted on articles published in Web of science, PubMed, Scopus, Academic search Premier, and Cochrane Library between 1990 and August 2017. Studies that reported the concurrent validity and/or reliability of dynamic MRI techniques for in vivo evaluation of joint or muscle mechanics were included after assessment by two independent reviewers. Selected articles were assessed using an adapted quality assessment tool and a data extraction process. Results for concurrent validity and reliability were categorized as poor, moderate, or excellent.Twenty articles fulfilled the inclusion criteria with a mean quality assessment score of 66% (±10.4%). Concurrent validity and/or reliability of eight dynamic MRI techniques were reported, with the knee being the most evaluated joint (seven studies). Moderate to excellent concurrent validity and reliability were reported for seven out of eight dynamic MRI techniques. Cine phase contrast and real-time MRI appeared to be the most valid and reliable techniques to evaluate joint motion, and spin tag for muscle motion.Dynamic MRI techniques are promising for the in vivo evaluation of musculoskeletal mechanics; however results should be evaluated with caution since validity and reliability have not been determined for all joints and muscles, nor for many pathological conditions
    corecore